Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object
نویسندگان
چکیده
By coupling a macroscopic mechanical oscillator to two microwave cavities, we simultaneously prepare and monitor a nonclassical steady state of mechanical motion. In each cavity, correlated radiation pressure forces induced by two coherent drives engineer the coupling between the quadratures of light and motion. We, first, demonstrate the ability to perform a continuous quantum nondemolition measurement of a single mechanical quadrature at a rate that exceeds the mechanical decoherence rate, while avoiding measurement backaction by more than 13 dB. Second, we apply this measurement technique to independently verify the preparation of a squeezed state in the mechanical oscillator, resolving quadrature fluctuations 20% below the quantum noise.
منابع مشابه
Nonclassical correlations of photon number and field components in the vacuum state
It is shown that the quantum jumps in the photon number n̂ from zero to one or more photons induced by backaction evasion quantum nondemolition measurements of a quadrature component x̂ of the vacuum light field state are strongly correlated with the quadrature component measurement results. This correlation corresponds to the operator expectation value 〈x̂n̂x̂〉 which is equal to one fourth for the ...
متن کاملNonclassical correlations of photon number and field components in the vacuum state Holger
It is shown that the quantum jumps in the photon number n̂ from zero to one or more photons induced by backaction evasion quantum nondemolition measurements of a quadrature component x̂ of the vacuum light field state are strongly correlated with the quadrature component measurement results. This correlation corresponds to the operator expectation value 〈x̂n̂x̂〉 which is equal to one fourth for the ...
متن کاملua nt - p h / 99 12 07 2 v 1 1 5 D ec 1 99 9 Nonclassical correlations of photon number and field components in the vacuum state
It is shown that the quantum jumps to one or more photons induced in the vacuum state of the light field by quantum nondemolition measurements of a quadrature component are strongly correlated with the quadrature measurement results. This correlation corresponds to the operator expectation value 〈x̂n̂x̂〉 which is equal to one fourth for the vacuum even though the photon number eigenvalue is zero. ...
متن کاملNonclassical correlations between photon number and quadrature components of the light field
Finite resolution quantum nondemolition (QND) measurements allow a determination of light field properties while preserving some of the original quantum coherence of the input state. It is thus possible to measure correlations between the photon number and a quadrature component of the same light field mode. Nonclassical features emerge as photon number quantization is resolved. In particular, ...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015